

Threat Landscape and Good Practice Guidefor Internet InfrastructureThe Physical and Logical Layers

Dr. Cédric LÉVY-BENCHETON

Network and Information Security Expert

European Union Agency for Network and Information Security

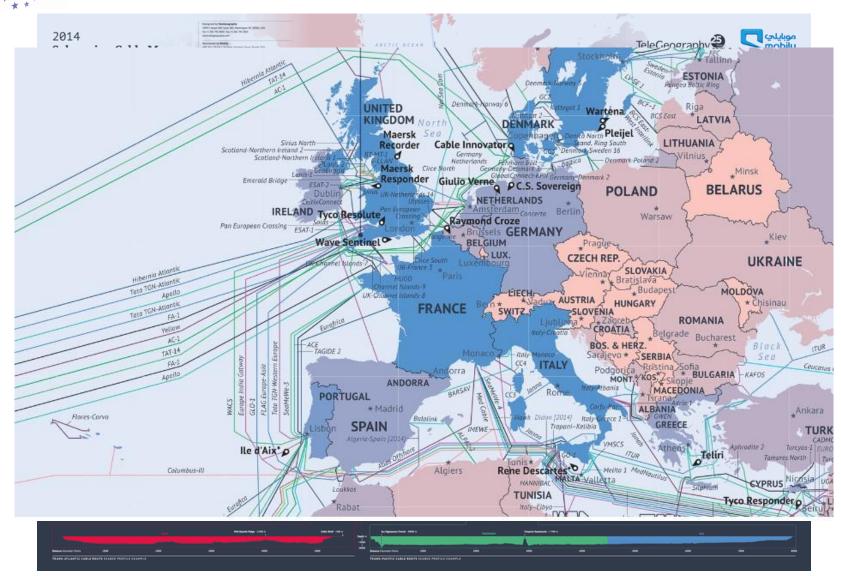
ENISA Workshop on EU Threat Landscape, Brussels, 24 February 2015

Follow ENISA: 📑 in 匡 🊟 😰 😪 🔝

European Union Agency for Network and Information Security

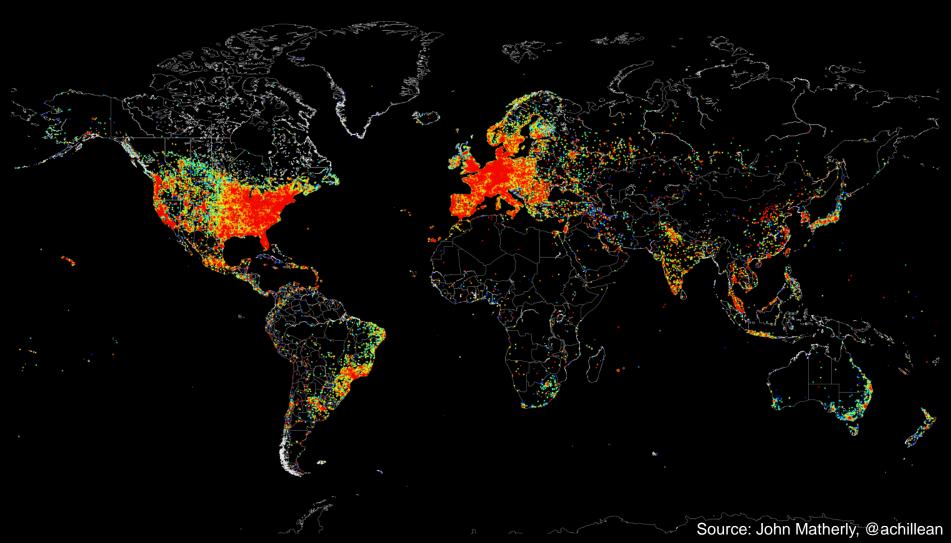
www.enisa.europa.eu

- Introduction
- Highlights of the project
- Conclusion


- Introduction
- Highlights of the project
- Conclusion

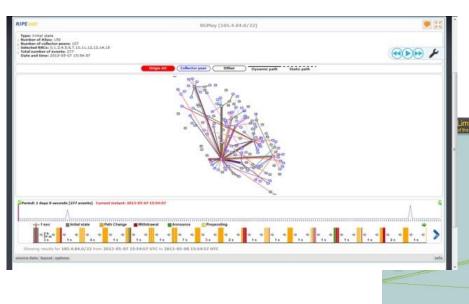
What is the Internet? Underwater cables

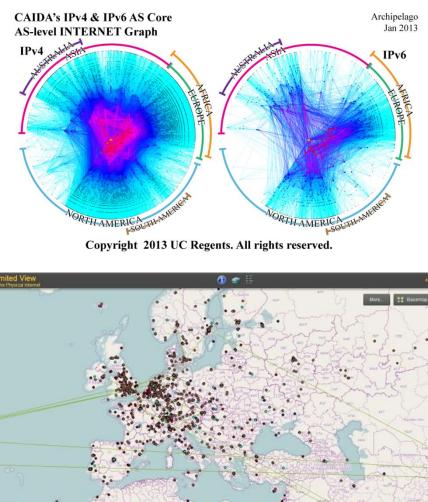
Source: Telegeography



enisa

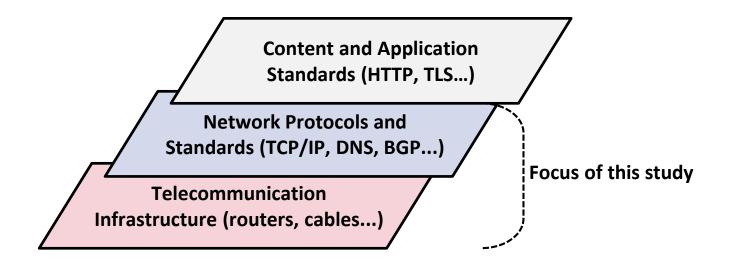
What is the Internet? Connected devices




European Union Agency for Network and Information Security

What is the Internet? Logical and Physical links

- BGP-derived maps
- AS Router-Level Topologies
- PoP-Level Topologies

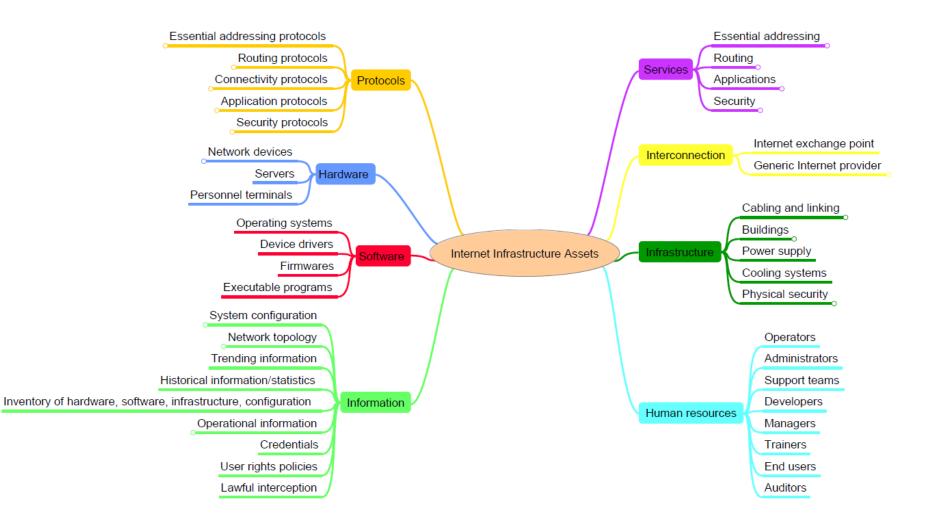


• Definition of the Internet [RFC 2026]

The Internet, a loosely-organized international collaboration of autonomous, interconnected networks, supports host-to-host communication through voluntary adherence to open protocols and procedures defined by Internet Standards. There are also many isolated interconnected networks, which are not connected to the global Internet but use the Internet Standards.

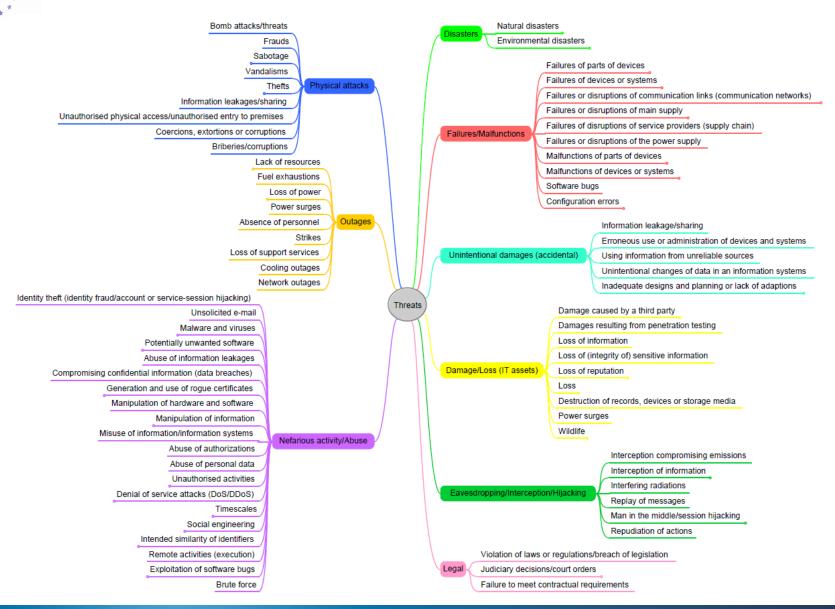
- Introduction
- Highlights of the project
- Conclusion

- 1. Identify valuable assets of physical and logical layers of the Internet infrastructure
- 2. Collect and evaluate information on current threats
- 3. Evaluate Important Specific Threats and assess trends
- 4. Link threats with assets involved
- 5. Link threats to the threat agents
- 6. Take stock of available good practices to reduce threat exposure and perform an overall gap analysis
- 7. Propose recommendations in protection measures



- Methodology
 - Identify assets of the Internet infrastructure
 - Structured list of assets types
- Results:
 - Assets mind map
- Dependencies not assessed at this stage

Result: Assets mind map (levels 1 and 2)



- Methodology
 - Identify all possible threats
 - Classify threats in threat types
- Results:
 - Mind maps (threats and threat agents)
- Dependencies not assessed at this stage

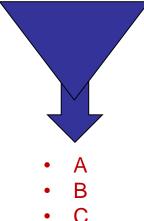
Result: Threats mind map (levels 1 and 2)

European Union Agency for Network and Information Security

enisa

- Methodology
 - Desktop research from authoritative sources
- Results:
 - Classification of important specific threats into "Threats groups"
 - Detailed description of important specific threats with the trends

ATTENTION: Trends increasing (resp. decreasing) only signify that the amount of specific attacks is higher (resp. lower) compared to the previous year



Method to identify important specific threats

Reports about threats

- Frequency of appearance/references in reports
- Appearance/references are estimated if no valid data was available (e.g. DDoS)
- Expert group judgment

Filter:

- Is threat relevant for the Internet infrastructure?
- Is threat specifically highlighted as important?
- Is threat already in the list?
- Reports about threats

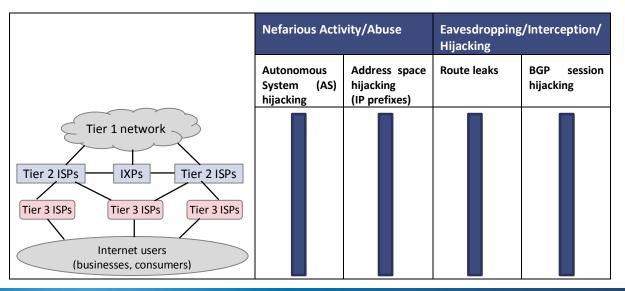
Reports investigated:

- "2014 Data Breach Investigations Report", Verizon, 2014.
- "Cloud Computing Top Threats in 2013", Cloud Security Alliance, 2013.
- "ENISA Threat Landscape Mid-year 2013", ENISA, 2013.
- "IBM Security Services Cyber Security Intelligence Index", IBM, 2013.
- "BSI Threats Catalogue", Federal Office for Information Security, 2012.
- "512k Maggedon", RIPE Labs, 2014.

Additional sources to evaluate trends:

- ENISA Threat Landscape 2013
- ENISA Annual Incident Reports 2013
- Hackmaggedon Analysis

Result: Classification of Important Specific

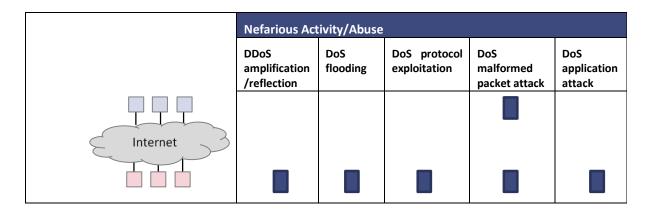

- Threats into Threat Groups
- Routing Threats
 - Autonomous System (AS) hijacking
 - Address space hijacking (IP prefixes)
 - Route leaks
 - BGP session hijacking
- DNS Threats +
 - DNS registrar hijacking
 - DNS spoofing
 - DNS poisoning (cache)
 - Domain name collision
- Denial of Service Threats
 - DDoS Amplification/reflection (NTP, DNS...)
 - DoS flooding (UDP, ICMP...)
 - DoS protocol exploitation (TCP-SYN, Push+Ack, ...)
 - DoS malformed packet attack (IP address options, ...)
 - DoS application (XDoS, ...)

- Generic Threats
 - Physical attack
 - Damage/loss
 - Failure of devices or systems
 - Configuration errors
 - Malware and virus (botnet...)
 - Brute force
 - Social engineering
 - Data breach
 - Espionage

- Nefarious Activity/Abuse
 - Autonomous System (AS) hijacking
 - Address space hijacking (IP prefixes)
- Eavesdropping/Interception/Hijacking
 - Route leaks
 - BGP session hijacking

Trend: Increasing **(**)

- Threat type: Nefarious Activity/Abuse
 - DNS registrar hijacking
 - DNS spoofing
 - DNS poisoning (cache)
 - Domain name collision



Nefarious Activ	us Activity/Abuse			
DNS registrar hijacking	DNS spoofing	DNS poisoning	Domain name collision	

- Threat Type: Nefarious Activity/Abuse
 - DDoS amplification/reflection (NTP, DNS...)
 - DoS flooding (UDP, ICMP...)
 - DoS protocol exploitation (TCP-SYN, Push+Ack, ...)
 - DoS malformed packet attack (IP address options, ...)
 - DoS application (XDoS, ...)

Trend: Increasing 🕕

- Physical attack
- Damage/Loss
- Failures/Malfunctions
 - Failure of devices or systems
 - Configuration errors
- Nefarious activity/Abuse
 - Malware and virus (botnet...)
 - Brute force
 - Social engineering
 - Data breach
- Eavesdropping/Interception/Hijacking
 - Espionage

Trend: N/A Trend: Increasing () Trend: Increasing ()

Trend: Increasing **(**)

Trend: Increasing **(**)

Result: Summary of trends

Threat groups	Threat types	Trends
Routing Threats	Nefarious Activity/Abuse	Increasing
	Eavesdropping/Interception/Hijacking	Increasing
DNS Threats	Nefarious Activity/Abuse	Decreasing U
Denial of Service	Nefarious Activity/Abuse	Increasing ()
Generic Threats	Physical attack	N/A
	Damage/Loss	Increasing
	Failures/Malfunctions	Increasing
	Nefarious activity/Abuse	Increasing
	Eavesdropping/Interception/Hijacking	Increasing ()

* enisa	:: Description of important specifi rends (excerpt)	c threats	
Threat groups —	→ 5.1 Routing Threats		
in out groupe	Routing is subject to attacks that can harm the interconnection of networks as well as the operation of single networks. A smooth operation of routing infrastructure is crucial for the robustness of the Internet. Most threats break down routing functions by hijacking, misusing, misconfiguring, or intercepting assigned numbers, addresses, or name spaces. The current trend indicates that this threat is on the rise.		
Threat type (mind map) —	Threat Type: Nefarious Activity/Abuse Trend: Increasing 😡 🗲	—— Threat trend	
Threat description —	Threat: Autonomous System (AS) hijacking AS hijacking attacks aim at impersonating a victim's organization. The motivation behind this type of attack is malicious: activities conducted with the hijacked network are masked and appear to be carried out on the behalf of the victim itself. Such attacks are characterized by an attacker announcing the victim's prefixes that originate at the victim's AS. ¹⁷ Example: A forensic case study on AS hijacking: the attacker's perspective¹⁶ 		
	 Threat: Address space hijacking (IP prefixes) This threat occurs when a rogue BGP peer maliciously announces a victim's prefixes in an effort to reroute some or all traffic through its own networks for untoward purposes (for example, to view contents of traffic that the router would otherwise not be able to read).^{18, 19, 20} Examples: Hacker redirects traffic from 19 Internet providers to steal bitcoins²¹ Hijack by AS4761 – Indosat, a quick report²² The new threat: targeted Internet traffic misdirection²³ Looking at the spamhaus DDOS from a BGP perspective²⁴ Pakistan hijacks YouTube²⁵ 		
	Threat Type: Eavesdropping/Interception/Hijacking Trend: Increasing 이		
	 Threat: Route leaks A route leak is said to occur when AS A advertises BGP routes that it has received from AS B to its neighbors, but AS A is not viewed as a transit provider for the announced prefixes.²⁶ <i>Examples:</i> Hijack by AS4761 - Indosat, a quick report²⁷ How the Internet in Australia went down under²⁸ Large route leaks²⁸ Threat: BGP session hijacking BGP session hijacking denotes an alteration of the contents of the BGP routing table by a malicious device, which can, among other impacts, prevent traffic from reaching the intended destination without acknowledgement or notification.^{20, 31, 32} 		

- Methodology
 - Link the threats with the assets involved (1-to-N mapping)
 - Limit to a certain level of the mind map (not too detailed)
- Results:
 - Description of the asset types involved in every threat

Result: Linking threats with assets involved (excerpt)

Threat types	Threats	Asset types
Physical attacks	Information leakages/sharing	Information, Infrastructure,
		Interconnection
Unintentional damages	Erroneous use or administration of	Protocols, Hardware, Software,
(accidental)	devices and systems	Information, Services
Failures/Malfunctions	Failures of disruptions of service	Protocols, Hardware, Software,
	providers (supply chain)	Information, Services
Disasters	Natural disasters	Hardware, Software, Information, Services,
		Interconnection, Infrastructure, Human
		resources
Outages	Network outages	Hardware, Software, Information, Services
Damage/Loss (IT assets)	Damage caused by a third parties	Hardware, Software, Information, Services,
		Interconnection, Infrastructure, Human
		resources
Eavesdropping/Intercept	Man in the middle/session hijacking	Software, Information, Services
ion/Hijacking		
Legal	Violations of law or	Software, Information, Interconnection,
	regulation/breaches of legislation	Human resoures
Nefarious activity/Abuse	Misuse of information/information	Protocols, Hardware, Software,
	systems	Information, Services, Interconnection
	Denial of service attacks	Hardware, Software, Information, Services
	(DoS/DDoS)	

- Methodology
 - Threat agents mapped in "ENISA Threat Landscape 2013"
 - Evaluate of threat agents for every threat type
- Results:
 - Presentation of the threat agents involved for every threat type

Result: Involvement of threat agents in threats

	Corporations	Hacktivists	Cyber criminals	Cyber terrorists	Script kiddies	Online social hackers	Employees	Nations states
Physical attacks	√	-	~	 ✓ 	-	-	✓	✓
Disasters	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Failures/ Malfunctions	√	-	-	-	-	-	√	-
Outages	√	\checkmark	~	✓	✓	~	~	√
Unintentional damages	√	-	-	-	-	-	✓	-
Damage/Loss	√	~	~	✓	✓	~	~	~
Nefarious activity/Abuse	~	~	~	×	√	~	✓	~
Eavesdropping/ Interception/ Hijacking	~	~	~	✓ 	✓	~	√	~
Legal	\checkmark	\checkmark	√	✓	✓	 ✓ 	\checkmark	\checkmark

- Methodology
 - Desktop research from authoritative sources
 - Interview with experts
 - Identify assets not covered by at least one good practice
- Results
 - Description of good practices to mitigate each threat
 - Coverage of assets for every good practice presented
 - Gap analysis: assets not covered

Methodology: List of sources and experts

1. Good practices from different organisations

- RIPE
- APNIC

enisa

- ARIN
- LACNIC
- AFRINIC
- CENTR
- DNS-OARC

- NANOG
- PACNOG
- IETF
- NIST
- Route Manifesto
- ICANN
- CISCO

- Juniper
- BSI
- ENISA
- Euro-IX
- Internet Society
- Cisesecurity.org
- Bettercrypto.org

2. Experts contacted

- Peter Koch (DNS)
- Patrik Falstrom (DNS)
- Benno Overeinder (Routing / BGP)
- Andrei Robachevsky (Routing / BGP)
- Randy Bush (RPKI / Routing)

Result: Good practices against routing threats (excerpt)

Threats	Good practices	Assets, assets covered	Gaps
AS Hijacking		Internet protocol addressing,	Administrators
		Routing protocols, Administrators	
	Utilise resource certification (RPKI) to provide AS origin validation.	Internet protocol addressing,	Administrators
	Reader must be aware that at the time of writing, it is no possible	Routing protocols	
	to detect AS hijacking automatically.		
Address space		Routing, Internet protocol	-
hijacking (IP		addressing, System configurations,	
prefixes)		Network topology	
	Registry databases such as IRR, APNIC, ARIN, and RIPE have to be	Routing, Internet protocol	Network
	subject to continuous maintenance. This shall allow usage of	addressing, System configurations	topology
	updated information to secure peering. For example, the "Route		
	Object" field can help validating routes received from peers.		
	Configuration updates for the routing infrastructure may only be	Routing, System configurations,	Internet protocol
	performed by a defined authority using strong authentication.	Network topology	addressing
Route leaks		Routing, Network topology	-
	Configure BGP maximum-prefix to ensure the validity of routes	Routing, Network topology	
	announced. If more prefixes are received, it is sign of an incorrect		
	behaviour and the BGP session shuts down.		
BGP session		Routing, Internet protocol	-
hijacking		addressing, System configurations,	
		Network topology	
	Employ AS path filtering.	Routing, Internet protocol	
		addressing, System configurations,	
		Network topology	
	Use TCP-AO (TCP-Authentication Option) to secure BGP	Routing, Internet protocol	
	Authentication in order to replace TCP-MD5. TCP-AO simplifies the	addressing, System configurations,	
	exchange of keys.	Network topology	

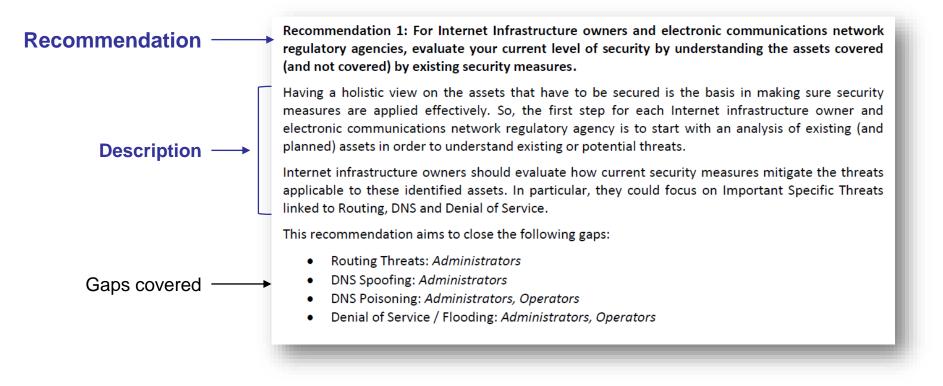
Result: Good practices against DNS threats (excerpt)

Threats	Good practices	Assets, assets covered	Gaps
DNS registrar	-	Domain name system, Addressing	-
hijacking		units, Applications, Credentials,	
		Administrators	
	Registrants must protect account credentials and define authorised users,	Addressing units, Credentials,	Domain name
	while registrars have to provide a secure authentication process.	Administrators	system,
			Applications
	Registrars should consider supporting DNSSEC.	Domain name system, Addressing	Credentials,
		units, Applications	Administrators
DNS spoofing		Domain name system, Addressing	Administrators
		units, Applications, System	
		configurations, Essential addressing	
		protocols – DNS, Administrators	
	Deploying DNSSEC aims to secure DNS clients (resolvers) origin	Domain name system, addressing units,	Administrators
	authentication of DNS data, authenticated denial of existence, and data	Applications, System Configurations,	
	integrity.	Essential addressing protocols – DNS	
DNS poisoning		Domain name system, Addressing	Administrators,
		units, Applications, System	Operators
		configurations, Executable programs,	
		Essential addressing protocols – DNS,	
		Administrators, Operators	
	Restrict dynamic updates to only authorised sources in order to avoid	Addressing units, applications, System	Domain name
	misuse. Such misuse include the abuse of a DNS server as an amplifier,	configurations, Executable programs	system, Essential
	DNS cache poisoning		addressing
			protocols – DNS,
			Administrators,
			Operators
Domain name		Domain name system, applications	-
collision	Preventing DNS request for internal namespaces to leak into the Internet	Applications	Domain name
	by applying firewall policies.		system
	Use reserved TLDs such as .test, .example, .invalid, or .localhost.	Domain name system, Applications	

Result: Good practices against Denial of Service

Threats	Good practices	Assets, assets covered	Gaps
Amplification /	-	Applications, security, Generic Internet	System configuration,
reflection		provider, Hardware, Executable programs,	Essential addressing
		System configuration, Application	protocols, Administrators,
		protocols, Administrators, Operators	Operators
	Adopt source IP address verification at the edge of	Applications, Security, Generic Internet	System configuration,
	Internet infrastructure (close to the origin of traffic) to	provider, Hardware, Executable programs,	Administrators, Operators
	prevent network address spoofing through ingress and egress filtering.	Application protocols	
	Operators of authoritative name server operator should	Applications, Security, Generic Internet	System configuration,
	implement RRL (Response Rate Limiting).	provider, Hardware, Executable programs	Application protocols,
			Administrators, Operators
Flooding		Applications, Security, Generic Internet	System configuration,
		providers, Hardware, Executable	Essential addressing
		programs, System configuration, Essential	protocols, Administrators,
		addressing protocols, Administrators,	Operators
		Operators	
	Manufacturers and configurators of network equipment	Applications, Security, Generic Internet	System configuration,
	should take steps to secure all devices and have to keep	providers, Hardware, Executable	Essential addressing
	them up-to-date.	programs	protocols, Administrators,
			Operators
Protocol	-	Ditto	-
exploitation			
Malformed	-	Ditto	-
packet attack			
Application	-	Applications, Security, Generic Internet	-
		provider, Hardware, Executable programs,	
		System configuration, Application	
		protocols, Administrators, Operators	

- Routing Threats
 - Administrators
- DNS
 - DNS Spoofing: Administrators
 - DNS Poisoning: Administrators, Operators
- Denial of Service / Flooding
 - System configuration
 - Essential addressing protocols
 - Administrators
 - Operators



- Methodology
 - Recommendations derived from the gap analysis
 - Validation through experts
- Results
 - Technical and organizational recommendations
 - Incentives on why the recommendation in important

- 1. For Internet Infrastructure owners and electronic communications network regulatory agencies, evaluate your current level of security by understanding the assets covered (and not covered) by existing security measures
 - For routing threats, DNS threats, Denial of Service
- 2. For Internet infrastructure owners, evaluate the application of adapted good practices in a focused manner
- 3. For Internet infrastructure owners, cooperate with the community to exchange on threats and promote the application of good practices as mitigation measures
 - Trust-based group / legal obligation, ISACs
- 4. For users deploying good practices guides, report on their implementations, assets covered and gaps found
- 5. Words matter: Ensure the right use of terms and definitions.

- 6. For Internet infrastructure owners, use proper risk assessment methods to understand vulnerable assets in your Internet infrastructure and prioritise your protection actions
- 7. Build an information and communication technology security awareness and training program
- 8. Internet infrastructure owners shall commit third-party vendors to apply security measures
- 9. Stay current on any updates

- Introduction
- Highlights of the project
- Conclusion

- Project outcome
 - Mind maps (assets and threats)
 - Identification of trends
 - Compilation of good practices
 - Gap analysis
 - Recommendations
- Provide tools to Internet Infrastructure owners
 - Part of their risk assessment
 - Evaluate the application of threats
 - Assess the deployment of good practices

Thank you Questions?

Dr. Cédric LÉVY-BENCHETON cedric.levy-bencheton@enisa.europa.eu Phone: +30 2814 409 630 Mobile: +30 6948 460 133

Follow ENISA: 📑 in 匡 🊟 😰 😪 🔝

European Union Agency for Network and Information Security

www.enisa.europa.eu